publications of the junior research group nano infection biology [NIBI]

group leader: Dr. Sieben

Browse

Recent Submissions

  • Publication
    Exogenous and Endogenous Triggers Differentially Stimulate Pigr Expression and Antibacterial Secretory Immunity in the Murine Respiratory Tract.
    (Springer, 2021-11-26) Pausder, Alexander; Fricke, Jennifer; Schughart, Klaus; Schreiber, Jens; Strowig, Till; Bruder, Dunja; Boehme, Julia; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
    Purpose: Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). Methods: Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. Results: Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. Conclusion: Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.
  • Publication
    Pseudomonas aeruginosa PA14 produces R-bodies, extendable protein polymers with roles in host colonization and virulence.
    (Nature, 2021-07-29) Wang, Bryan; Lin, Yu-Cheng; Vasquez-Rifo, Alejandro; Jo, Jeanyoung; Price-Whelan, Alexa; McDonald, Shujuan Tao; Brown, Lewis M; Sieben, Christian; Dietrich, Lars E P; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.
    R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes. PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.